Jörg Moldenhauer
Automatische Erkennung von Zuständen in Anthropomatiksystemen
In dieser Arbeit werden adaptive Methoden zur Analyse von Anthropomatikdaten entwickelt. Zielsetzung ist die automatische Erkennung von Systemzuständen mit Hidden-Markov-Modellen. Anwendungsbeispiele sind Bohrgeräusche aus der Wirbelsäulenchirurgie, medizinische Ultraschallbilder und menschliche Bewegungsdaten. Neben dem Vergleich mit anderen Klassifikationsverfahren werden Merkmalsgenerierung, geeignete Modellstrukturen, Optimierung der Zustände und Aspekte der Implementierung besprochen.