Marc Peter Deisenroth
Efficient reinforcement learning using Gaussian processes
Reihe: Karlsruhe Series on Intelligent Sensor-Actuator-SystemsThis book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems. First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.